Welcome to The ME2045 Group J Crane Project Blog page!


This entire site is to give a guide to Group J`s efforts to design a small portable crane for use in disaster relief before our final submission of work and our presentation.

Following our first meeting (See the Minute Meetings Topic for reference) the following positions have been allocated;

D.Scriven Project Manager
R.Sidhu Chief Designer
H.Singh Sall Finnance Officer
J.Sidhu Materials Specialist
R.Shukla Stress Analysis

For Our Progress up to date please see the Project Plan below and then head to the relevant topic and we hope you find our work interesting!

Sunday, 25 April 2010

Material Analysis II

Materials Analysis II

After a group meeting where the material of the crane was discussed, we decided that cost was going to be a major issue as well as availability. Using the Materials Analysis it was decided that both Aluminium and Steel would be options for the material of the crane. The following data is the analysis of the different types of Aluminium and Steel available.

Aluminium
First to be analysed was the different types of Aluminium available. There is a wide variety of Aluminium available with varying grades of aluminium mixed with other materials. The beginning number, ranging from 1-8 of the 4 digit number represents the strength of the material. 1 being the weakest form, and 8 being the strongest.
The material will now be analysed. As alot of the numbers are the same, they have been given equal values for the analysis phase. Each section is worth 9 points and a maximum of 54 can be attained.
As alot of the data is similar or the same, the results are ranged quite close together. Out of the 9 materials available only 3 would suffice for the application. Aluminium 6061, Aluminium 6063, and Aluminium 7050. The reason for this is their strength is greater than the latter grades of Aluminium, the stronger the material the more resistant it will be to deformation under loads. The material must also be easily worked with, and due to grades above 7000 having poor weldability and corrosion resistant qualities, Aluminium 7050 must be ruled out. This leaves a choice between Aluminium 6061 and Aluminium 6063.

Steel
The material will now be analysed. As alot of the numbers are the same, they have been given equal values for the analysis phase. Each section is worth 9 points and a maximum of 54 can be attained.
From the table above we can see that there are some quite mixed results. This is due to the different types and grades of steel available. There are alloy steels which are mixed with other materials, and there are varying qualities of steel depending on its purity. Although the materials are very similar in regards to their properties, the two that would be considered for the crane would have to be the Carbon Steel 1023, and Cast Carbon Steel. This is because Carbon Steel has high strength characteristics as well as a low cost factor. In the crane industry alot of cranes are made out of a carbon steel as mentioned in the materials research. However, this is usually for very large cranes which will carry a much heavier load than compared to the crane we are designing. With this in mind we must consider the weight factor of steel compared to Aluminium. The weight of Aluminium is a considerable amount less than the weight of Steel. This can be seen from the Density of both materials. The more Dense the material the more it weights. For a crane that will need to be carried over rough terrain by people, the lighter and easier it is to transport, the better.

The data will be presented to the group in the next meeting, we will discuss further the choice between Aluminium 6061, Aluminium 6063, Cast Carbon Steel, and Carbon Steel 1023.

No comments:

Post a Comment